An Example of the Co-ordination of the Tetraphenylboron Anion to a Transition Metal through an Arene Ring

By M. J. Nolte and G. Gafner
(Chemical Physics Group of the National Physical and Chemical Research Laboratories)
and Linda M. Haines*

(National Chemical Research Labovatory, C.S.I.R., P.O. Box 395, Pretoria, Republic of South Africa)

Summary The preparation, n.m.r. data, and molecular structure of the neutral compound, $\mathrm{Rh}\left[\mathrm{P}(\mathrm{OMe})_{3}\right]_{2} \mathrm{BPh}_{4}$, in which the BPh_{4} group is bonded to the rhodium atom through an arene ring, are reported.

We report the first example of a complex in which the BPh_{4} group is directly bonded to a transition metal atom. The addition of NaBPh_{4} to $\left[\mathrm{C}_{8} \mathrm{H}_{12} \mathrm{RhCl}_{2}\right.$ and an excess of $\mathrm{P}(\mathrm{OMe})_{3}$ in methanol gave an ionic derivative which was

Figure 1. Molecular geometry of $\operatorname{Rh}\left[\mathrm{P}(\mathrm{OMe})_{3}\right]_{2} \mathrm{BPh}_{4}$.
characterised as the five-co-ordinate Rh^{I} complex, $\{\mathrm{Rh}[\mathrm{P}$ $\left.\left.(\mathrm{OMe})_{3}\right]_{5}\right\} \mathrm{BPh}_{4}$. This ionic compound decomposed in air to give a neutral complex ($\Lambda=0.3 \mathrm{ohms}^{-1} \mathrm{~cm}^{2}{ }^{2} \mathrm{~mole}^{-1}$, $\mathrm{Me}_{2} \mathrm{CO}$) which was formulated as $\mathrm{Rh}\left[\mathrm{P}(\mathrm{OMe})_{3}\right]_{2} \mathrm{BPh}_{4}$ (n.m.r., analytical, and molecular weight data).

The deep yellow crystals of $\mathrm{Rh}\left[\mathrm{P}(\mathrm{OMe})_{3}\right]_{2} \mathrm{BPh}_{4}$ are
monoclinic; $a=15.57, \quad b=11.52, \quad c=19.73 \AA, \quad \beta=$ $120.68^{\circ}, D_{\mathrm{m}}=1.39, D_{\mathrm{c}}=1.40 \mathrm{~g} . \mathrm{cm} .^{-3}$ for $Z=4$, space group $P 2_{1} / c$; Hilger and Watts diffractometer ($\mathrm{Mo}-K_{\alpha}$ radiation): the 1984 most intense reflections used in the initial structure determination. Patterson and Fourier syntheses followed by nine cycles of full-matrix leastsquares refinement ${ }^{1}$ gave the present structure: $R 0.073$, anisotropic thermal motion for the rhodium, phosphorus, and oxygen atoms.

Figure 2. Molecular configuration including deviations ($\dot{\AA}$) of atoms from the mean plane of the six ring (A) carbon atoms.

The average estimated standard deviations of the bond lengths (Figures 1 and 2) $\mathrm{Rh}-\mathrm{P}, \mathrm{Rh}-\mathrm{C}$, and $\mathrm{C}-\mathrm{C}$ are 0.01 , 0.02 , and $0.03 \AA$, respectively. The rhodium atom is situated symmetrically with respect to one of the phenyl rings of the BPh_{4} group and at a distance of $1.86 \AA$ from the mean plane of this ring (A). This [cf. $1.72 \AA$ for the metal-ring distance $\left.\left(\mathrm{C}_{6} \mathrm{H}_{6}\right) \mathrm{Cr}(\mathrm{CO})_{3}\right]^{2}$ clearly shows the rhodium atom to be directly bonded to the phenyl ring (A). The plane defined by the atoms $R h, P(1)$, and $P(2)$ makes an
angle of 91° with the mean plane of the bonded phenyl ring, with the two phosphorus atoms equidistant from the latter. The plane through $R h, P(1)$, and $P(2)$ intersects the phenyl ring (A) in an asymmetric manner (Figure 2). The $\mathrm{P}(2) \mathrm{RhP}(1)$ valency angle is $90 \pm 1^{\circ}$.
The $\mathrm{C}-\mathrm{C}$ bond distances in the phenyl ring (A) range from 1.39 to $1.44 \AA$ but deviations from the mean are not significant. The non-bonded rings are planar, having r.m.s. deviations of $0.01-0.02 \AA$. By contrast, the atoms of the bonded ring (A) show a r.m.s. deviation of $0.04 \AA$ with individual displacements consistent with a boat configuration. The dihedral angles between the best plane through $\mathrm{C}(2) \mathrm{C}(3) \mathrm{C}(5) \mathrm{C}(6)$ and the $\mathrm{C}(1) \mathrm{C}(2) \mathrm{C}(6)$ and $\mathrm{C}(3) \mathrm{C}(4) \mathrm{C}(5)$ planes are 6°. The four distances, $\mathrm{Rh}-\mathrm{C}(2), \mathrm{Rh}-\mathrm{C}(3)$, $\mathrm{Rh}-\mathrm{C}(5)$, and $\mathrm{Rh}-\mathrm{C}(6)$, are similar to within their e.s.d.'s and average $2.31 \AA$, whilst the other two, $\mathrm{Rh}-\mathrm{C}(1)(2 \cdot 41 \AA)$ and $\mathrm{Rh}-\mathrm{C}(4)(2 \cdot 40 \AA)$, are significantly longer. This
distortion of the bonded phenyl ring (A) might be a consequence of packing forces but may also result from a slight localisation of the bonding M.O's of the ring (A) on the carbon atoms $2,3,5$, and 6 .

The n.m.r. assignments [$\tau 3.5(\mathrm{~d}, 2-\mathrm{H}$ and $6-\mathrm{H}, J 6.5 \mathrm{~Hz})$, $4 \cdot 16(\mathrm{t}, 3-\mathrm{H}$ and $5-\mathrm{H}, J 6.5 \mathrm{~Hz}), 3 \cdot 19$ (poorly resolved t , $4-\mathrm{H}), 2.89(\mathrm{~m}$, non-bonded $\mathrm{Ar} H)$, and $6.73\left(\mathrm{t}, \mathrm{P}-\mathrm{O}-\mathrm{CH}_{3}\right.$, $J_{\mathrm{PH}} 6.2 \mathrm{~Hz}$)] are in accord with previous studies which have shown that the proton resonances of an arene ring bonded to a metal atom occur at $\tau 1$ to 2 to high field of those of the free arene ligand. ${ }^{3}$ The pattern of the last resonance (a broad central component and two sharp outer peaks) is attributed to a "virtual coupling" effect."

The complexes, $\mathrm{Rh}\left[\mathrm{P}(\mathrm{OR})_{3}\right]_{2} \mathrm{BPh}_{4}\left(\mathrm{R}=\mathrm{Pr}^{\mathrm{I}}, \mathrm{Bu}^{\mathrm{n}}, \mathrm{Bu}^{\mathrm{i}}\right)$ have alsn been synthesised by a similar method.
(Received, September 30th, 1969; Com. 1479.)

1 V. R. Busing, K. O. Martin, and H. A. Levy, "ORFLS, A Fortran Crystallographic Least-Square Program," ORNL-TM-305, 1962. ${ }^{2}$ M. F. Bailey and L. F. Dahl, Inorg. Chem., 1965 , 4, 1314.
${ }^{3}$ W. McFarlane and S. O. Grim, J. Organometallic Chem., 1966, 5, 147.
${ }^{4}$ J. P. Fackler, jun., J. A. Fetchin, J. Mayhew, W. C. Seidel, T. J. Swift, and M. Weeks, J. Amer. Chem. Soc., 1969, $91,1941$.

